Forecasting Seasonal UK Consumption Components
نویسندگان
چکیده
Periodic models for seasonal data allow the parameters of the model to vary across the different seasons. This paper uses the components of UK consumption to see whether the periodic autoregressive (PAR) model yields more accurate forecasts than non-periodic models, such as the airline model of Box and Jenkins (1970), and autoregressive models that pre-test for (seasonal) unit roots. We analyse possible explanations for the relatively poor forecast performance of the periodic models that we find, notwithstanding the apparent support such models receive from the data in-sample.
منابع مشابه
Performance of Periodic Error Correction Models in Forecasting Consumption Data
Periodic time series models have become an appealing tool for the analysis of time series showing distinct seasonal patterns. Since these models condition the data{generating mechanism of a given time series on the season they are able to cope with periodic generalisations of common economic models introducing seasonal preferences, seasonal technologies etc. The paper examines for some macroeco...
متن کاملInsight into the Properties of the UK Power Consumption Using a Linear Regression and Wavelet Transform Approach
In this paper, the relationship between the Gross Domestic Product (GDP), air temperature variations and power consumption is evaluated using the linear regression and Wavelet Coherence (WTC) approach on a 1971-2011 time series for the United Kingdom (UK). The results based on the linear regression approach indicate that some 66% variability of the UK electricity demand can be explained by the ...
متن کاملPeriodic Unobserved Component Time Series Models: estimation and forecasting with applications
Periodic time series analysis refers to the modelling approach where important time series properties depend on the period of the year. The standard approach to time series modelling is to treat a time series as a stochastic process with seasonal fluctuations. In a periodic analysis seasonal variations are modelled using separate yearly time series for each season, which do not possess seasonal...
متن کاملForecasting with Periodic Autoregressive Time Series Models
This chapter is concerned with forecasting univariate seasonal time series data using periodic autoregressive models We show how one should account for unit roots and deterministic terms when generating out of sample forecasts We illus trate the models for various quarterly UK consumption series This is the rst version July of a chapter that is to be prepared for potential inclusion in the Comp...
متن کاملUsing Seasonal and Cyclical Components in Least Squares Forecasting Models
Although many articles have been written concerning the improved accuracy of combined forecasts, sometimes the obvious is overlooked. By combining seasonal indices and cyclical factors with other explanatory variables, forecasting models acquire increased accuracy for out-of-sample predictions.. This paper encourages the use of least squares forecasting models with time series components. It al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997